Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 14: 1127656, 2023.
Article in English | MEDLINE | ID: mdl-37235020

ABSTRACT

Successful establishment of Pinus ponderosa seedlings in the southwestern United States is often limited by stressful and harsh site conditions related to drought severity and severe disturbances such as wildfire and mining operations. Seedling quality has an important influence on outplanting performance, but nursery practices that typically employ optimal growing environments may also be limiting seedling morphological and physiological performance on stressful outplanting sites. To address this, a study was established to test alterations in seedling characteristics subjected to irrigation limitations during nursery culture and their subsequent outplanting performance. This study was conducted as two separate experiments: (1) a nursery conditioning experiment examined seedling development of three New Mexico seed sources exposed to three irrigation levels (low, moderate, and high); (2) a simulated outplanting experiment examined a subset of the seedlings from experiment 1 in a controlled outplanting environment consisting of two soil moisture conditions (mesic, maintained via irrigation and dry, irrigated only once). In the nursery study, the lack of interactions between seed source and irrigation main effects for most response variables indicate that low irrigation treatment level responses were consistent across a range of sources. Irrigation treatment levels from the nursery resulted in few morphological differences; however, the low irrigation level increased physiological parameters such as net photosynthetic rate and water use efficiency. In the simulated outplanting experiment, seedlings subjected to less irrigation in the nursery had greater mean height, diameter, needle dry mass, and stem dry mass; additionally, low irrigation levels in the nursery increased the amount of hydraulically active xylem and xylem flow velocity. Overall, this study shows that nursery culture irrigation limitations, regardless of the seed sources tested, can improve seedling morphology and physiological functioning under simulated dry outplanting conditions. This may ultimately translate to increased survival and growth performance on harsh outplanting sites.

2.
Front Plant Sci ; 11: 557894, 2020.
Article in English | MEDLINE | ID: mdl-33013975

ABSTRACT

In the western US, quaking aspen (Populus tremuloides Michx.) regenerates primarily by root suckers after disturbances such as low to moderate severity fires. Planting aspen seedlings grown from seed may provide a mechanism to improve restoration success and genetic diversity on severely disturbed sites. However, few studies have examined the use of container-grown aspen seedlings for restoration purposes from both the outplanting and nursery production perspective. Thus, the purpose of this novel study was to examine how alterations in irrigation levels during nursery production across three seed sources would impact seedling performance attributes on harsh, dry outplanting sites. Irrigation treatments were based on three irrigation levels, determined gravimetrically: High = 90%, Medium = 80%, and Low = 70% of container capacity. The three seed sources represented a latitudinal gradient across the aspen range (New Mexico, Utah, and Alberta). Carbon isotope analysis indicated irrigation treatments were effective in creating higher levels of water stress for both the Low and Medium irrigation levels compared to seedlings under the High irrigation level. Seedlings subject to the Low irrigation level were found to induce greater height, higher photosynthetic rates, larger percentages of hydraulically active xylem, and faster xylem flow velocities compared to the High irrigation level. The lack of an interaction between irrigation treatments and seed source for nearly all response variables suggests that nursery conditioning via irrigation limitations may be effective for a range of aspen seed sources.

3.
Front Plant Sci ; 10: 1526, 2019.
Article in English | MEDLINE | ID: mdl-31824542

ABSTRACT

Quercus spp. (oaks) are generally intermediate in shade tolerance, yet there is large variation within the genus in shade tolerance and plasticity in response to varying resource availability. Ecophysiological knowledge specific to semi-evergreen Quercus spp. from subtropical maritime forests is lacking relative to temperate deciduous oaks. We studied the influence of light availability and plant competition on leaf physiology and performance of semi-evergreen Quercus virginiana on a barrier island along the US southern Atlantic coast. Seedlings were underplanted in pine (Pinus taeda) plantation stands with varying overstory density (clear-cut, heavy thin, light thin, and non-thinned; creating a gradient of understory light availability) and vegetation (no competition removal or herbaceous competition removal) treatments. After 2 years, seedling survival was higher with increasing light availability (clear-cut = heavy thin > light thin > non-thinned). Seedling growth (i.e., diameter, height, and crown width) increased similarly with increasing thinning intensity, while vegetation control was mainly beneficial to seedling growth in clear-cuts. These responses were partially explained by foliar nitrogen and leaf trait measurements, which followed the same pattern. Q. virginiana seedlings demonstrated high plasticity in their ability to acclimate to varying resource availability, as indicated by light response curves, specific leaf area, stomatal density, stomatal pore index, and maximum theoretical stomatal conductance. Light compensation and saturation points illustrated seedling capacity to increase net CO2 assimilation with increased light availability. Leaves on trees in the high light environment had the highest net CO2 assimilation, stomatal density, stomatal pore index, maximum theoretical stomatal conductance, and lowest specific leaf area. Although we demonstrated the relative shade tolerance of Q. virginiana in lower light environments (i.e., heavy and light thin plots), this semi-evergreen species shows high plasticity in capacity to respond to varying resource availability, similar to other Quercus spp. from mesic and Mediterranean environments.

4.
Data Brief ; 18: 939-946, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900260

ABSTRACT

Reported here are original data related to the article "Indigenous knowledge and stand characteristics of a threatened tree species in a highly insecure area: Chilgoza pine in Afghanistan" (Shalizi et al., 2018) [1]. A dendrochronological summary of all known chilgoza pine tree growth increment cores collected in Afghanistan is presented in this data in brief article. Chilgoza pine trees and regeneration density profiles are reported for four provinces of eastern Afghanistan. In addition, images depicting chilgoza pine forest structure, stand conditions, and utilization impacts are presented.

5.
PLoS One ; 12(5): e0177904, 2017.
Article in English | MEDLINE | ID: mdl-28562684

ABSTRACT

Reforestation is needed globally to help restore degraded sites, combat desertification, protect watersheds, and provide forest products. This involves planting forest tree seedlings grown in local nurseries, but technologies to produce quality seedlings are lacking in developing countries. Modern nursery containers used to propagate seedlings have internal-surface barriers (ribs or ridges) or side-slits to prevent root spiraling. These are cost prohibitive or unavailable in developing countries and so polybags (plastic bags) are more commonly used, despite their tendency to produce seedlings with deformed root systems that have less potential to establish on field sites. Discarded plastic bottles, which are readily available worldwide, may be a feasible alternative for seedling propagation. We conducted two experiments to assess the potential of repurposed plastic beverage bottles to grow quality trees: 1) Container Comparison-to evaluate Arizona walnut (Juglans major [Toor.] Heller) and Afghan pine (Pinus eldarica Medw.) seedling root and shoot development in two plastic bottle types compared to modern nursery containers and polybags, and 2) Bottle Modification-to examine the effects of root spiraling prevention techniques (side-slits, internal-ridges, and control) and container opacity (green, black, and clear) on Afghan pine seedling morphological attributes. Nursery growth and first-year seedling field performance were evaluated for both experiments. In experiment one, seedlings of both species had fewer spiraled roots in bottle containers compared to polybags. Arizona walnut had more fibrous root systems in polybags, while Afghan pine root system fibrosity was greatest in bottle containers. First-year field performance of both species was not affected by container type. In experiment two, less spiraled roots occurred in containers with air-slits and interior-ridges compared to the control. The effects of container opacity on seedling morphology were inconsistent. Root spiral prevention and opacity had no influence on Afghan pine one-year survival, field height and diameter, with the exception of opacity for height growth, whereby seedlings grown in green containers were taller than those grown in black containers, but seedlings grown in clear containers were similar to both. Our results provide the first evidence that plastic bottle containers may provide an effective alternative for production of high quality seedlings, which may benefit agroforestry, reforestation, restoration, and conservation programs in developing countries.


Subject(s)
Developing Countries , Forests , Plastics , Trees/growth & development
6.
Environ Sci Pollut Res Int ; 24(12): 11215-11227, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28293829

ABSTRACT

This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.


Subject(s)
Elymus/growth & development , Mining , Molybdenum/chemistry , Robinia/growth & development , Soil Pollutants/chemistry , Elymus/drug effects , Fertilizers , New Mexico , Robinia/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...